12 research outputs found

    Energy Efficient Routing Algorithm in Wireless Sensor Networks

    Get PDF
    This Wireless sensor network (WSN) is widely considered as one of the most important technologies for the twenty-first century, it provides the availability of small and low-cost sensor nodes with the ability of sensing different types of physical and environmental conditions, data processing, and wireless communication. Sensor nodes have a limited transmission range, and their processing and storage capabilities as well as their energy resources are also limited. Thus, optimized routing algorithms for wireless sensor networks should be utilized in order to maintain the routes in the network and to ensure reliable multi-hop communication under these conditions. Keywords: Wireless Sensor Networks, Energy Efficiency, Routing Protocols, Solar Sensors, Mobile Agent

    Study of MAC Protocols for Mobile Wireless Body Sensor Networks

    Get PDF
    Wireless Body Area Networks (WBAN) also referred to as a body sensor network (BSN), is a wireless network of wearable computing devices. It has emerged as a key technology to provide real-time health monitoring of a patient and diagnose many life threatening diseases. WBAN operates in close vicinity to, on, or inside a human body and supports a variety of medical and non-medical applications. The design of a medium access control is a challenge due to the characteristics of wireless channel and the need to fulfill both requirements of mobility support and energy efficiency.  This paper presents a comparative study of IEEE 802.15.6, IEEE 804.15.4 and T-MAC in order to analyze the performance of each standard in terms of delay, throughput and energy consumption. Keywords: Biomedical, IEEE 802.15.6; T-MAC, IEEE 802.15.4, mobility, low-power communication, wireless body sensor networks, implantable sensors, healthcare applications, biosensors

    Relay based thermal aware and mobility support routing protocol for wireless body sensor networks

    Get PDF
    The evolvement of wireless technologies has enabled revolutionizing the health-care industry by monitor patient health condition requiring early diagnosis and interfering when a chronic situation is taking place. In this regard, miniaturized biosensors have been manufactured to cover various medical applications forming therefore a Wireless Body Sensor Network (WBSN). A WBSN is comprised of several small and low power devices capable of sensing vital signs such as heart rate, blood glucose, body temperature etc.. Although WBSN main purpose is to provide the most convenient wireless setting for the networking of human body sensors, there are still a great number of technical challenges to resolve such as: power source miniaturization, low power transceivers, biocompatibility, secure data transfer, minimum transmission delay and high quality of service. These challenges have to be taken into consideration when creating a new routing protocol for WBSNs. This paper proposes a new Relay based Thermal aware and Mobile Routing Protocol (RTM-RP) for Wireless Body Sensor Networks tackling the problem of high energy consumption and high temperature increase where the mobility is a crucial constraint to handle

    A Mobile Agent Approach for IDS in Mobile Ad Hoc Network

    Get PDF
    Abstract: Mobile Ad Hoc Networks are a group of wireless computers, forming a communication network, that have no predetermined structure. It"s highly vulnerable to attacks due to the open medium dynamically changing network topology, co-operative algorithm, lack of centralized. The fact that security is a critical problem. This work describes the proposal for an Intrusion Detection System architecture that uses multi-agent system. It"s an effective choice for many research and application areas due to several reasons, including improvements in latency, reducing network load and threat assessment. To respect the main primitives of a multi-agent system, we used the MadKit platform for implementation

    A New Efficient Authenticated and Key Agreement Scheme for SIP Using Digital Signature Algorithm on Elliptic Curves, Journal of Telecommunications and Information Technology, 2017, nr 2

    Get PDF
    Voice over Internet Protocol (VoIP) has been recently one of the more popular applications in Internet technology. It benefits lower cost of equipment, operation, and better integration with data applications than voice communications over telephone networks. However, the voice packets delivered over the Internet are not protected. The session initiation protocol (SIP) is widely used signaling protocol that controls communications on the Internet, typically using hypertext transport protocol (HTTP) digest authentication, which is vulnerable to many forms of attacks. This paper proposes a new secure authentication and key agreement scheme based on Digital Signature Algorithm (DSA) and Elliptic Curve Cryptography (ECC) named (ECDSA). Security analysis demonstrates that the proposed scheme can resist various attacks and it can be applied to authenticate the users with different SIP domains

    Efficient Ciphertext-Policy Attribute-Based Encryption Constructions with Outsourced Encryption and Decryption

    No full text
    The invention of the Ciphertext-Policy Attribute-Based Encryption scheme opened a new perspective for realizing attribute-based access control systems without being forced to trust the storage service provider, which is the case in traditional systems where data are sent to the storage service provider in clear and the storage service provider is the party that controls the access to these data. In the Ciphertext-Policy Attribute-Based Encryption model, the data owner encrypts data using an attribute-based access structure before sending them to the storage service, and only users with authorized sets of attributes can successfully decrypt the generated ciphertext. However, Ciphertext-Policy Attribute-Based Encryption schemes employ expensive operations (i.e., bilinear pairings and modular exponentiations) and generate long ciphertexts and secret keys, which makes them hard to implement in real-life applications especially for resource-constrained devices. In this paper, we propose two Ciphertext-Policy Attribute-Based Encryption Key Encapsulation Mechanisms that can be provided as services in the cloud, minimizing the user’s encryption and decryption costs without exposing any sensitive information to the public cloud provider. In the first scheme, the ABE Service Provider is considered fully untrusted. On the other hand, the second scheme requires the ABE Service Provider to be semi-trusted (Honest-but-Curious) and does not collude with illegitimate users. Both schemes are proved to be selectively CPA-secure in the random oracle. The theoretical and experimental performance results show that both our first and second schemes are more efficient than the reviewed outsourced CP-ABE schemes in terms of user-side computation, communication, and storage costs

    Formal security analysis of an IoT mutual authentication protocol

    Get PDF
    Wireless sensor networks (WSNs) are widely used in day to day activities in order to provide users with multiple services such as smart grids, smart homes, industrial internet of things (IoT), agriculture and health-care. These services are provided by collecting and transmitting the sensing data to the gateway node over an unsafe channel, having constraints of security, energy consumption and connectivity. In 2022, Fariss et al. proposed an ECC-based mutual authentication and key agreement protocol for WSNs. They provided its informal security and showed that it’s secure against many security threats. They also formally analyzed the scheme’s security using AVISPA Tool. In this article, we analyze the security of Fariss et. Al protocol using GNY logic, an advanced version of BAN logic

    Formal security analysis of an IoT mutual authentication protocol

    No full text
    Wireless sensor networks (WSNs) are widely used in day to day activities in order to provide users with multiple services such as smart grids, smart homes, industrial internet of things (IoT), agriculture and health-care. These services are provided by collecting and transmitting the sensing data to the gateway node over an unsafe channel, having constraints of security, energy consumption and connectivity. In 2022, Fariss et al. proposed an ECC-based mutual authentication and key agreement protocol for WSNs. They provided its informal security and showed that it’s secure against many security threats. They also formally analyzed the scheme’s security using AVISPA Tool. In this article, we analyze the security of Fariss et. Al protocol using GNY logic, an advanced version of BAN logic

    Equalized Energy Consumption in Wireless Body Area Networks for a Prolonged Network Lifetime

    No full text
    The phenomenal advances in electronics contributed to a widespread use of distributed sensors in wireless communications. A set of biosensors can be deployed or implanted in the human body to form a Wireless Body Area Network (WBAN), where various WBAN PHY layers are utilized. The WBAN allows the measurement of physiological data, which is forwarded by the gateway to the base station for analysis purposes. The main issue in conceiving a WBAN communication mechanism is to manage the residual energy of sensors. The mobile agent system has been widely applied for surveillance applications in Wireless Sensor Networks (WSNs). It consists in dispatching one or more mobile agents simultaneously to collect data, while following a predetermined optimum itinerary. The continuous use of the optimal itinerary leads to a rapid depletion of sensor nodes batteries, which minimizes the network lifetime. This paper presents a new algorithm to equalize the energy consumption among sensor motes. The algorithm exploits all the available paths towards the destination and classifies them with respect to the end-to-end delay and the overall energy consumption. The proposed algorithm performs better compared to the optimal routing path. It increases the network lifetime to the maximum by postponing routing of data via the most-recently used path, and it also maintains data delivery within the delay interval threshold
    corecore